首页
网站开发
桌面应用
管理软件
微信开发
App开发
嵌入式软件
工具软件
数据采集与分析
其他
首页
>
> 详细
辅导CSE 525程序、讲解Programming编程、CS,Java,c++辅导 讲解数据库SQL|解析SPSS
项目预算:
开发周期:
发布时间:
要求地区:
CSE 525 Programming Assignment 1
Due March 20th 11:59:59
The goal of this assignment is to implement three RL algorithms listed as follows.
● Monte Carlo (with function approximation)
● Fitted Q iteration
● DQN
You will be using 1 MuJoCo environment (InvertedPendulumMuJoCoEnv-v0) and 1
Atari environment (Pong-v0), and compare the RL algorithms. Feel free to use all of the
extensions/tricks we discussed during the classes for reliable learning. As the behavior
policy of off-policy RL methods, use epsilon-greedy.
What you need to submit:
(1) A notebook file that contains your network's definition, training processes,
evaluation results and necessary comments of your codes.
(2) A report that contains core codes of the algorithms and networks design, analysis
of your results and comparison between the algorithms.
Prerequisites
In this assignment, we recommend using Colab, OpenAI Gym, OpenAI Gym[Atari],
PyBullet and PyBulletGym (Open AI Gym[Mujoco] implementation based on PyBullet).
So, before getting started, please be prepared for the smooth running of the required
dependencies.
The afore-mentioned packages are actually simulated environments that are able to
interact with our agents to offer instant observations, rewards, and other important
information. For this time, we picked 1 discrete environment in Atari called “Pong-v0”
and 1 continuous environment in MuJoCo called “InvertedPendulumMuJoCoEnv-v0”.
Note that the actions in “Pong” are discrete while the actions in “InvertedPendulum” are
continuous. As you know, the three algorithms are not able to deal with continuous
actions, which further requires you to discretize the action spaces in the
“InvertedPendulum” environment first.
For the Atari game “Pong” environment, we encourage you to preprocess the image
input to make it easier for the network to learn.
Rubrics
1) Network design for two environments. (20 points in toal, 10 points each)
2) Training process for three algorithms, there should be 6 training processes in total
for 2 environments and three algorithms. (30 points in toal, 5 points each, you
should provide a decent amount of comments to explain your codes.)
3) Evaluation results of your 6 training programs, this should include cumulative
reward by training episodes plots, average return on ten times run of your final
policy and any other plots that you find helpful to explain your design’s
performance. (30 points in toal, 5 points each.)
4) Analysis of performance of three algorithms for each environment, analyze your
plots and numbers under each algorithm and compare three algorithms under each
environment. (15 points in total)
5) Comparison between the use of epsilon-greedy vs. random behavior policy. For
this experiment, use “InvertedPendulum” as your environment and fitted Q
iteration as your RL algorithm. Give plots of your cumulative reward by episodes
and average return on test runs of your learned policy and analyze the performance
of different behavior policies. (5 points in total)
To start with:
We prepared a simple starter code for you to understand what you should code and where
to put your analysis. You don’t have to strictly follow the format, write your code in the
way you are comfortable with.
Before turning in:
1. Check your notebook file, make sure that once the instructors “restart and run
all”, no errors occur. Also, make sure the format of your report is correct.
2. Rename your notebook file like firstname_lastname_SBUID.ipynb and your
report like firstname_lastname_SBUID_report.pdf. Zip these two files in a name
like firstname_lastname_SBUID.zip and upload to Blackboard.
After turning in:
1. Any format errors and fail-to-run errors might result in penalty.
2. Late submissions might result in penalty. 10% per day, 50% max.
软件开发、广告设计客服
QQ:99515681
邮箱:99515681@qq.com
工作时间:8:00-23:00
微信:codinghelp
热点项目
更多
代做ceng0013 design of a pro...
2024-11-13
代做mech4880 refrigeration a...
2024-11-13
代做mcd1350: media studies a...
2024-11-13
代写fint b338f (autumn 2024)...
2024-11-13
代做engd3000 design of tunab...
2024-11-13
代做n1611 financial economet...
2024-11-13
代做econ 2331: economic and ...
2024-11-13
代做cs770/870 assignment 8代...
2024-11-13
代写amath 481/581 autumn qua...
2024-11-13
代做ccc8013 the process of s...
2024-11-13
代写csit040 – modern comput...
2024-11-13
代写econ 2070: introduc2on t...
2024-11-13
代写cct260, project 2 person...
2024-11-13
热点标签
mktg2509
csci 2600
38170
lng302
csse3010
phas3226
77938
arch1162
engn4536/engn6536
acx5903
comp151101
phl245
cse12
comp9312
stat3016/6016
phas0038
comp2140
6qqmb312
xjco3011
rest0005
ematm0051
5qqmn219
lubs5062m
eee8155
cege0100
eap033
artd1109
mat246
etc3430
ecmm462
mis102
inft6800
ddes9903
comp6521
comp9517
comp3331/9331
comp4337
comp6008
comp9414
bu.231.790.81
man00150m
csb352h
math1041
eengm4100
isys1002
08
6057cem
mktg3504
mthm036
mtrx1701
mth3241
eeee3086
cmp-7038b
cmp-7000a
ints4010
econ2151
infs5710
fins5516
fin3309
fins5510
gsoe9340
math2007
math2036
soee5010
mark3088
infs3605
elec9714
comp2271
ma214
comp2211
infs3604
600426
sit254
acct3091
bbt405
msin0116
com107/com113
mark5826
sit120
comp9021
eco2101
eeen40700
cs253
ece3114
ecmm447
chns3000
math377
itd102
comp9444
comp(2041|9044)
econ0060
econ7230
mgt001371
ecs-323
cs6250
mgdi60012
mdia2012
comm221001
comm5000
ma1008
engl642
econ241
com333
math367
mis201
nbs-7041x
meek16104
econ2003
comm1190
mbas902
comp-1027
dpst1091
comp7315
eppd1033
m06
ee3025
msci231
bb113/bbs1063
fc709
comp3425
comp9417
econ42915
cb9101
math1102e
chme0017
fc307
mkt60104
5522usst
litr1-uc6201.200
ee1102
cosc2803
math39512
omp9727
int2067/int5051
bsb151
mgt253
fc021
babs2202
mis2002s
phya21
18-213
cege0012
mdia1002
math38032
mech5125
07
cisc102
mgx3110
cs240
11175
fin3020s
eco3420
ictten622
comp9727
cpt111
de114102d
mgm320h5s
bafi1019
math21112
efim20036
mn-3503
fins5568
110.807
bcpm000028
info6030
bma0092
bcpm0054
math20212
ce335
cs365
cenv6141
ftec5580
math2010
ec3450
comm1170
ecmt1010
csci-ua.0480-003
econ12-200
ib3960
ectb60h3f
cs247—assignment
tk3163
ics3u
ib3j80
comp20008
comp9334
eppd1063
acct2343
cct109
isys1055/3412
math350-real
math2014
eec180
stat141b
econ2101
msinm014/msing014/msing014b
fit2004
comp643
bu1002
cm2030
联系我们
- QQ: 9951568
© 2021
www.rj363.com
软件定制开发网!