首页
网站开发
桌面应用
管理软件
微信开发
App开发
嵌入式软件
工具软件
数据采集与分析
其他
首页
>
> 详细
辅导CSCI2100D程序、讲解C++编程语言、c/c++设计程序调试 解析C/C++编程|解析Haskell程序
项目预算:
开发周期:
发布时间:
要求地区:
CSCI2100D 2018-19: Midterm Exam
Time allowed: 105 minutes Student No.:
Q1. [10 marks] Sort the functions below in ascending order of growth rate and justify
your answer briefly. [12 marks] Fill in the C language code from line 7 to 9 in the function below and
analyze the time complexity of the function in O notation.
– int find(int n, int A[], int value)
Find a given value in a sorted array A of size n. Numbers in A satisfy:
A[0] < A[1] < A[2] < · · · < A[n − 1]
If A[i] = value : return i;
Otherwise : return -1.
1 int find (int n , int A [] , int value ){
2 int left , right , mid ;
3 left = 0;
4 right = n - 1;
5 while ( left <= right ){
6 mid = ( left + right ) / 2;
7 if( A [ mid ] == value )
Q3. [18 marks] A prime number (or a prime) is a natural number greater than 1 that is not
divisive by other numbers except 1 and itself. For example, 2, 3, and 17 are three prime
numbers. Given a positive integer n as input, the problem is to find all prime numbers in
[2, n]. In the following, we provide three valid algorithms implemented in C language to
solve this problem. Give the time complexity of each algorithm in O notation.
– void algo(int n, int isPrime[])
The array isPrime contains the result.
isPrime[i] = 0 : i is not a prime;
isPrime[i] = 1 : i is a prime.
– Algorithm1
1 void algo1 (int n , int isPrime []){
2 int i , j ;
3 for ( i =2; i <= n ; i ++){
4 isPrime [ i ] = 1; // assume i is a prime
5 for( j =2; j < i ; j ++)
6 if( i % j ==0) isPrime [ i ] = 0;
7 }
8 }
– Algorithm2: Only line 5 is changed compared to Algorithm 1.
1 void algo2 (int n , int isPrime []){
2 int i , j ;
3 for ( i =2; i <= n ; i ++){
4 isPrime [ i ] = 1; // assume i is a prime
5 for( j =2; j *j <= i ; j ++)
6 if( i % j ==0) isPrime [ i ] = 0;
7 }
8 }
– Algorithm3: For each integer j (j > 1), 2j, 3j, 4j, · · · are not prime numbers.
1 void algo3 (int n , int isPrime []){
2 int i , j ;
3 for ( i =2; i <= n ; i ++) isPrime [ i ] = 1;
4 for ( j =2; j < n ; j ++)
5 for( i = j *2; i <= n ; i += j )
6 isPrime [ i ] = 0; // j is a factor of i
7 }
Q4. [20 marks] Compute the set difference of two linked lists.
– In this problem, we use a singly linked list to maintain a sequence of distinct integers
in ascending order. Now, we have two linked lists denoted as A and B as input,
which represent two sets of sorted integers.
– List SetDifference(List headA, List headB)
Create a new sorted list as the set difference A\B, that is, if an integer is in list A
but not in list B, then insert it into the result linked list.
1 typedef struct linked_list_node {
2 int value ;
3 struct linked_list_node * next ;
4 } Node ;
5 typedef Node * List ;
6
7 List SetDifference ( List headA , List headB ){
8 List head = NULL ;
9
10 return head ;
11 }
– Implement the function SetDifference in C language efficiently and analyze the
time complexity of your algorithm. For your time complexity analysis, you can
assume that there are n integers in A andm integers in B. An algorithm withO(n ·m)
time complexity is regarded not very efficient, thus cannot get full marks.
Q5. [20 marks] Given a sequence of characters composed of ‘(’, ‘)’, ‘[’ and ‘]’, design an
algorithm to determine whether it is a valid sequence.
– Definition:
∗ An empty sequence is valid;
∗ A ‘(’ immediately followed by a ‘)’ is valid, but is invalid in the reverse order, i.e., (
) is valid, and ) ( is invalid;
∗ A ‘[’ immediately followed by a ‘]’ is valid, but is invalid in the reverse order, i.e.,
[ ] is valid, and ] [ is invalid;
∗ A valid sequence contained in a pair of ( ) or [ ] is still valid;
∗ A concatenation of two valid sequences is still valid;
∗ A single character that is unpaired is invalid;
∗ A sequence having a pair of ( ) and a pair of [ ] with partial overlap is invalid, e.g.,
( [ ) ], and [ ( ] ).
– Valid Sample 1 : ( )
Valid Sample 2 :
Valid Sample 3 : ( ( ) [ ] ) [ ( ) ] ( )
– Invalid Sample 1 : ( ( ( ( ) ) ) ]
Invalid Sample 2 : ( [ ) ]
Invalid Sample 3: [ ( ]
– Show your algorithm in pseudo-code and analyze its time complexity. You can
assume that the input sequence is stored in a character array Seq of size n, and print
“valid” or “invalid” as the output.
Q6. [20 marks] Binary Tree Traversal. An Inorder traversal of a binary tree visits the
left subtree, the root, and the right subtree. A Preorder traversal visits the root, the left
subtree, and the right subtree. A Postorder traversal visits the left subtree, the right
subtree, and the root.
– Write down the tree node sequence by Inorder, Preorder and Postorder traversal of
the given tree, respectively.
– For one binary tree, we perform Inorder and Preorder traversal on it and obtain the
tree node sequences shown below. Reconstruct and draw the binary tree.
Inorder : ADEFGHMZ
Preorder: GDAFEMHZ
软件开发、广告设计客服
QQ:99515681
邮箱:99515681@qq.com
工作时间:8:00-23:00
微信:codinghelp
热点项目
更多
urba6006代写、java/c++编程语...
2024-12-26
代做program、代写python编程语...
2024-12-26
代写dts207tc、sql编程语言代做
2024-12-25
cs209a代做、java程序设计代写
2024-12-25
cs305程序代做、代写python程序...
2024-12-25
代写csc1001、代做python设计程...
2024-12-24
代写practice test preparatio...
2024-12-24
代写bre2031 – environmental...
2024-12-24
代写ece5550: applied kalman ...
2024-12-24
代做conmgnt 7049 – measurem...
2024-12-24
代写ece3700j introduction to...
2024-12-24
代做adad9311 designing the e...
2024-12-24
代做comp5618 - applied cyber...
2024-12-24
热点标签
mktg2509
csci 2600
38170
lng302
csse3010
phas3226
77938
arch1162
engn4536/engn6536
acx5903
comp151101
phl245
cse12
comp9312
stat3016/6016
phas0038
comp2140
6qqmb312
xjco3011
rest0005
ematm0051
5qqmn219
lubs5062m
eee8155
cege0100
eap033
artd1109
mat246
etc3430
ecmm462
mis102
inft6800
ddes9903
comp6521
comp9517
comp3331/9331
comp4337
comp6008
comp9414
bu.231.790.81
man00150m
csb352h
math1041
eengm4100
isys1002
08
6057cem
mktg3504
mthm036
mtrx1701
mth3241
eeee3086
cmp-7038b
cmp-7000a
ints4010
econ2151
infs5710
fins5516
fin3309
fins5510
gsoe9340
math2007
math2036
soee5010
mark3088
infs3605
elec9714
comp2271
ma214
comp2211
infs3604
600426
sit254
acct3091
bbt405
msin0116
com107/com113
mark5826
sit120
comp9021
eco2101
eeen40700
cs253
ece3114
ecmm447
chns3000
math377
itd102
comp9444
comp(2041|9044)
econ0060
econ7230
mgt001371
ecs-323
cs6250
mgdi60012
mdia2012
comm221001
comm5000
ma1008
engl642
econ241
com333
math367
mis201
nbs-7041x
meek16104
econ2003
comm1190
mbas902
comp-1027
dpst1091
comp7315
eppd1033
m06
ee3025
msci231
bb113/bbs1063
fc709
comp3425
comp9417
econ42915
cb9101
math1102e
chme0017
fc307
mkt60104
5522usst
litr1-uc6201.200
ee1102
cosc2803
math39512
omp9727
int2067/int5051
bsb151
mgt253
fc021
babs2202
mis2002s
phya21
18-213
cege0012
mdia1002
math38032
mech5125
07
cisc102
mgx3110
cs240
11175
fin3020s
eco3420
ictten622
comp9727
cpt111
de114102d
mgm320h5s
bafi1019
math21112
efim20036
mn-3503
fins5568
110.807
bcpm000028
info6030
bma0092
bcpm0054
math20212
ce335
cs365
cenv6141
ftec5580
math2010
ec3450
comm1170
ecmt1010
csci-ua.0480-003
econ12-200
ib3960
ectb60h3f
cs247—assignment
tk3163
ics3u
ib3j80
comp20008
comp9334
eppd1063
acct2343
cct109
isys1055/3412
math350-real
math2014
eec180
stat141b
econ2101
msinm014/msing014/msing014b
fit2004
comp643
bu1002
cm2030
联系我们
- QQ: 9951568
© 2021
www.rj363.com
软件定制开发网!