首页
网站开发
桌面应用
管理软件
微信开发
App开发
嵌入式软件
工具软件
数据采集与分析
其他
首页
>
> 详细
EE425X程序设计讲解、program编程讲解、辅导Java,Python程序 讲解R语言编程|辅导留学生 Statistics统计、回归、迭代
项目预算:
开发周期:
发布时间:
要求地区:
Homework 1b: Linear Regression part 2.
EE425X - Machine Learning: A Signal Processing Perspective
Homework 1 focused on learning the parameter θ for linear regression. In this homework we will first understand
how to use the learnt parameter to predict the output for a given query input. We will also understand
bias-variance tradeoff and how to decide the model dimension when limited training data is available. This
HW will rely heavily on the code from the previous homework.
Generate Data Code: Generate m + mtest data points satisfying
y = θ
Tx + e
with θ being ONE fixed n length vector for all of them. Use n = 100, θ = [100, −99, 98, −97...1]0, σ2e = 0.01||θ||22,e ∼ N (0, σ2e), x ∼ N (0, I), and assume mutual independence of the different inputs and noise values (e).
1. Use code from Homework 1 (using any one approach is okay) to learn θ. Vary m and show a plot of both
estimation error in θ,||θ − ˆθ||22/||θ||2
and a second plot of the “Monte Carlo estimate” of the prediction error on the test data (test data MSE).
Normalized-Test-MSE := E[(ytest − yˆ)2]/E[y2test], with ˆy := ˆθ
Txtest
Monte Carlo estimate means: compute (ytest −yˆ)
2
for mtest different input-output pairs and then average
the result.
(a) Vary m: use m = 80, m = 100, m = 120, m = 400. If your code is unable to return an estimate of θ,
you can report the errors to be ∞ (and for the plot just use a large value say 100000 to replace ∞.
(b) Repeat this experiment with σ2e = 0.1||θ||22.
Thus this part will produce four plots.
2. In this second part, suppose you have only m = 80 training data points satisfying y = θTx + e, with
n = 100. Notice n is the same as in the first part. I had a typo earlier which has now been fixed.
What you will have concluded from part 1 is that you cannot learn θ correctly in this case because m is
even smaller than n.
Let us assume you do not have the option to increase m. What can you do? All you can do is reduce n
to a value nsmall ≤ m. Experiment with different values of nsmall to come up with the best one. Do this
experiment for two values of σ2e: σ2e = 0.01||θ||22and σ2e = 0.1||θ||22.
How to decide which entries of x to throw away? For now, just throw away the last n−nsmall + 1 entries.
So for nsmall = 1, let xsmall be just the first entry, and so on. So for nsmall = 30 for example, xsmall
will be the first 30 entries of x. There are many other better ways which we will learn about later in the
course.
Start with nsmall = 1 and keep increasing its value and each time compute Normalized-Test-MSE by
learning a value of θ first (using m = 80 of course). Obtain a plot. Use the plot and what you learn in
class to decide what value of nsmall is best.
3. Interpret your results based on the Bias-Variance tradeoff discussion. See Section 11 of Summary-Notes
and what will be taught in the next few classes.
1
软件开发、广告设计客服
QQ:99515681
邮箱:99515681@qq.com
工作时间:8:00-23:00
微信:codinghelp
热点项目
更多
代写dts207tc、sql编程语言代做
2024-12-25
cs209a代做、java程序设计代写
2024-12-25
cs305程序代做、代写python程序...
2024-12-25
代写csc1001、代做python设计程...
2024-12-24
代写practice test preparatio...
2024-12-24
代写bre2031 – environmental...
2024-12-24
代写ece5550: applied kalman ...
2024-12-24
代做conmgnt 7049 – measurem...
2024-12-24
代写ece3700j introduction to...
2024-12-24
代做adad9311 designing the e...
2024-12-24
代做comp5618 - applied cyber...
2024-12-24
代做ece5550: applied kalman ...
2024-12-24
代做cp1402 assignment - netw...
2024-12-24
热点标签
mktg2509
csci 2600
38170
lng302
csse3010
phas3226
77938
arch1162
engn4536/engn6536
acx5903
comp151101
phl245
cse12
comp9312
stat3016/6016
phas0038
comp2140
6qqmb312
xjco3011
rest0005
ematm0051
5qqmn219
lubs5062m
eee8155
cege0100
eap033
artd1109
mat246
etc3430
ecmm462
mis102
inft6800
ddes9903
comp6521
comp9517
comp3331/9331
comp4337
comp6008
comp9414
bu.231.790.81
man00150m
csb352h
math1041
eengm4100
isys1002
08
6057cem
mktg3504
mthm036
mtrx1701
mth3241
eeee3086
cmp-7038b
cmp-7000a
ints4010
econ2151
infs5710
fins5516
fin3309
fins5510
gsoe9340
math2007
math2036
soee5010
mark3088
infs3605
elec9714
comp2271
ma214
comp2211
infs3604
600426
sit254
acct3091
bbt405
msin0116
com107/com113
mark5826
sit120
comp9021
eco2101
eeen40700
cs253
ece3114
ecmm447
chns3000
math377
itd102
comp9444
comp(2041|9044)
econ0060
econ7230
mgt001371
ecs-323
cs6250
mgdi60012
mdia2012
comm221001
comm5000
ma1008
engl642
econ241
com333
math367
mis201
nbs-7041x
meek16104
econ2003
comm1190
mbas902
comp-1027
dpst1091
comp7315
eppd1033
m06
ee3025
msci231
bb113/bbs1063
fc709
comp3425
comp9417
econ42915
cb9101
math1102e
chme0017
fc307
mkt60104
5522usst
litr1-uc6201.200
ee1102
cosc2803
math39512
omp9727
int2067/int5051
bsb151
mgt253
fc021
babs2202
mis2002s
phya21
18-213
cege0012
mdia1002
math38032
mech5125
07
cisc102
mgx3110
cs240
11175
fin3020s
eco3420
ictten622
comp9727
cpt111
de114102d
mgm320h5s
bafi1019
math21112
efim20036
mn-3503
fins5568
110.807
bcpm000028
info6030
bma0092
bcpm0054
math20212
ce335
cs365
cenv6141
ftec5580
math2010
ec3450
comm1170
ecmt1010
csci-ua.0480-003
econ12-200
ib3960
ectb60h3f
cs247—assignment
tk3163
ics3u
ib3j80
comp20008
comp9334
eppd1063
acct2343
cct109
isys1055/3412
math350-real
math2014
eec180
stat141b
econ2101
msinm014/msing014/msing014b
fit2004
comp643
bu1002
cm2030
联系我们
- QQ: 9951568
© 2021
www.rj363.com
软件定制开发网!