首页
网站开发
桌面应用
管理软件
微信开发
App开发
嵌入式软件
工具软件
数据采集与分析
其他
首页
>
> 详细
讲解ECE 9203编程、辅导MATLAB程序、MATLAB程序调试 辅导Python编程|辅导Python程序
项目预算:
开发周期:
发布时间:
要求地区:
ECE 9203/9023 – Random Signals, Adaptive and Kalman Filtering
Winter 2021, MATLAB Assignment #1
Due date & time: Friday, February 19, 2021, 11 PM EDT.
Upload to “Assignments” section. Email or DropBox submissions not accepted.
1. (10 marks) Generate the following random signals in MATLAB. Plot the estimated probability density
function (PDF) and power spectral density (PSD) for each. Comment on how close the estimated PDF and
PSD are to their theoretical values. (see “wgn.mlx” for guidance).
a. White Gaussian Noise, mean = 0, variance = 1
b. White Uniform Noise, mean = 0, variance = 1
c. Pink Gaussian Noise, mean = 0, variance = 1
2. (10 marks) In this exercise, we will apply AR modeling to speech samples. Download “m01ae.wav”,
“w01ae.wav”, “w01ih.wav”, and “w01uw.wav” from “Resources -> MATLAB” directory. Complete the
following:
a. For each speech sample, plot the estimated variance of the white noise input against the model order,
with the model order ranging from 1 to 25. See the documentation for “aryule” command for
accessing the estimated variance. Comment on the results. What would be a good model order for
modelling these waveforms?
b. For each speech sample and the chosen model order, compute and plot the periodogram and AR
spectral estimates. See “LinearPredictionExample.mlx” for guidance. Comment on the results. In
particular, what is the AR spectral estimate trying to model? Are the AR spectral estimates the same
across the four speech samples?
3. (5 marks) The input to a Wiener filter of length two is described by the difference equation, u(n) = x(n) +
v2(n), where x(n) = 0.3x(n-1) + 0.64 x(n-2) + v1(n), and v1(n) and v2(n) are zero-mean white noise processes of
variances 0.4 and 0.2 respectively. The desired input is given by the difference equation, d(n) = 0.1x(n) +
0.52 x(n-1). We derived the equations for the error performance surface and the Wiener filter for this
example in class. Do the following in MATLAB (see “WienerFilterExample1.m” for guidance):
a. Plot the error performance surface as function of the weights.
b. Plot the contours of the error performance surface and indicate the Wiener solution on this plot.
c. Plot the gradient vectors and comment on their orientation.
4. (15 marks) Consider a one-step adaptive predictor for a generic second order real AR process defined by the
difference equation u(n) + a1 u(n-1) +a2 u(n-2) = v(n), where v(n) is a zero-mean white noise process with
variance,!".
a. Derive the equations for r(0), r(1), and r(2).
"=1, compute the eigenvalues, eigenvectors, and the eigenvalue spread. Using the LMS
algorithm with the convergence parameter, µ = 0.003, plot the power spectral densities for e(n). Include these plots in your assignment, clearly labeling the axes. What observations
can you make from these plots?
d. Compute the ensemble-average learning curve of the LMS process by averaging the squared values of
the prediction error, e(n). Similarly, compute the ensemble-average learning curves for the NLMS
algorithm using d = 0.05. Include these plots with your assignment, along with your observations
comparing the NLMS and LMS results.
软件开发、广告设计客服
QQ:99515681
邮箱:99515681@qq.com
工作时间:8:00-23:00
微信:codinghelp
热点项目
更多
代写dts207tc、sql编程语言代做
2024-12-25
cs209a代做、java程序设计代写
2024-12-25
cs305程序代做、代写python程序...
2024-12-25
代写csc1001、代做python设计程...
2024-12-24
代写practice test preparatio...
2024-12-24
代写bre2031 – environmental...
2024-12-24
代写ece5550: applied kalman ...
2024-12-24
代做conmgnt 7049 – measurem...
2024-12-24
代写ece3700j introduction to...
2024-12-24
代做adad9311 designing the e...
2024-12-24
代做comp5618 - applied cyber...
2024-12-24
代做ece5550: applied kalman ...
2024-12-24
代做cp1402 assignment - netw...
2024-12-24
热点标签
mktg2509
csci 2600
38170
lng302
csse3010
phas3226
77938
arch1162
engn4536/engn6536
acx5903
comp151101
phl245
cse12
comp9312
stat3016/6016
phas0038
comp2140
6qqmb312
xjco3011
rest0005
ematm0051
5qqmn219
lubs5062m
eee8155
cege0100
eap033
artd1109
mat246
etc3430
ecmm462
mis102
inft6800
ddes9903
comp6521
comp9517
comp3331/9331
comp4337
comp6008
comp9414
bu.231.790.81
man00150m
csb352h
math1041
eengm4100
isys1002
08
6057cem
mktg3504
mthm036
mtrx1701
mth3241
eeee3086
cmp-7038b
cmp-7000a
ints4010
econ2151
infs5710
fins5516
fin3309
fins5510
gsoe9340
math2007
math2036
soee5010
mark3088
infs3605
elec9714
comp2271
ma214
comp2211
infs3604
600426
sit254
acct3091
bbt405
msin0116
com107/com113
mark5826
sit120
comp9021
eco2101
eeen40700
cs253
ece3114
ecmm447
chns3000
math377
itd102
comp9444
comp(2041|9044)
econ0060
econ7230
mgt001371
ecs-323
cs6250
mgdi60012
mdia2012
comm221001
comm5000
ma1008
engl642
econ241
com333
math367
mis201
nbs-7041x
meek16104
econ2003
comm1190
mbas902
comp-1027
dpst1091
comp7315
eppd1033
m06
ee3025
msci231
bb113/bbs1063
fc709
comp3425
comp9417
econ42915
cb9101
math1102e
chme0017
fc307
mkt60104
5522usst
litr1-uc6201.200
ee1102
cosc2803
math39512
omp9727
int2067/int5051
bsb151
mgt253
fc021
babs2202
mis2002s
phya21
18-213
cege0012
mdia1002
math38032
mech5125
07
cisc102
mgx3110
cs240
11175
fin3020s
eco3420
ictten622
comp9727
cpt111
de114102d
mgm320h5s
bafi1019
math21112
efim20036
mn-3503
fins5568
110.807
bcpm000028
info6030
bma0092
bcpm0054
math20212
ce335
cs365
cenv6141
ftec5580
math2010
ec3450
comm1170
ecmt1010
csci-ua.0480-003
econ12-200
ib3960
ectb60h3f
cs247—assignment
tk3163
ics3u
ib3j80
comp20008
comp9334
eppd1063
acct2343
cct109
isys1055/3412
math350-real
math2014
eec180
stat141b
econ2101
msinm014/msing014/msing014b
fit2004
comp643
bu1002
cm2030
联系我们
- QQ: 9951568
© 2021
www.rj363.com
软件定制开发网!