首页
网站开发
桌面应用
管理软件
微信开发
App开发
嵌入式软件
工具软件
数据采集与分析
其他
首页
>
> 详细
Routing (PBR) Router 程序辅导、讲解A Policy-Based Routin编程 调试Matlab程序|讲解留学生Processing
项目预算:
开发周期:
发布时间:
要求地区:
Project 1: A Policy-Based Routing (PBR) Router based on Distance-Vector Algorithm
1 / 4
Project 1
A Policy-Based Routing (PBR) Router
based on Distance-Vector Algorithm
1. Objectives
Design a DV-based router which simulates a RIP router on the Internet. The router can
determine the shortest route based on the policy.
2. Requirements
? Design a program called “router”.
? The “router” can be launched many times on one machine. Each launch will start up
a new “router” process or thread, meaning that you deploy a new router. Killing a
“router” process or thread means you shut down or remove a router.
? Fill and update the routing table of the “router” process using Distance Vector
algorithm and specified policy.
? Exchange routing tables among “router” processes by UDP socket, just like RIP do.
3. Routing Table
Suppose the distance between nodes and their adjacent router is 1. The Routing
Information Base (Routing table) uses the following structure:
Destination Route
5 2,3,4
Where:
Destination: 5 is the destination number.
Route: 2,3,4 is the route to the destination 5. It means that the packet will go through 2, 3 and 4 to the
destination 5 and 2 is the next node. To support the routing policy, the complete route is recorded in routing
table, not the next hop. When transmitting packet, just think the first next node.
4. Lunch-up
To identify routers and their neighbors, when you run the program, it must receive the
following parameters:
router?ID,?myport?,?port1,?port2,?port3…? ? ?
Among them :
ID:the number of routers, digital 0~9
myport: The UDP port the router use to send and receive packet
port1, port2, port 3, …: The UDP ports that routers’ neighbors use
For example, for a given topology like below:
4 5
6
3
Project 1: A Policy-Based Routing (PBR) Router based on Distance-Vector Algorithm
2 / 4
You run the program like this:
router?3,?3003,?3004?
router?4,?3004,?3003,?3006,?3005? ?
router?5,?3005,?3004,?3006? ?
router?6,?3006,?3004,?3005? ?
5. Supported commands
The program should support the following commands:
Command Description
N Print activity’s adjacent list.
Format: 4 5 (in one line, space separated)
If having no neighbors,then print “Empty”
RT Export the routes that reach to every destination node.
Each route occupies one line.
Format:
Destination route
1 4, 3
4 5, 4
D n Send a data packet with a specified or default TTL value to the
destination that the number n represents.
Each node need to print out the action taken on the data packet.
The Packet should reach the destination within the specified time
or steps in TTL, otherwise it will be discarded.
Assume the destination is 5.
For the source sender,
? if the destination is the adjacent node, send directly and print
out “Direct to 5”.
? if there are no any adjacent nodes, print out “No route to 5”.
For the node that received the packet,
? Make TTL minus 1.
? If TTL=0, discard it, and print out “time exceeded 5”,
otherwise continue to transmit it.
? If the node is the destination, print out “Destination 5”.
? If the node is not the destination and the destination is in its
base, print out “Forward to 5”.
? If the node can’t forward the packet (no route exists in its
base) , discarded the packet and print out “Dropped 5”.
P K n1 n2 … nk Specified priority route. The route to the destination nk should
Project 1: A Policy-Based Routing (PBR) Router based on Distance-Vector Algorithm
3 / 4
include the specified intermediate nodes n1 n2 … .
n1 n2 … nk : IDs of all K nodes and nk is the ID of destination
node.
Replace possible shortest route with possible priority route after
the node receives this command.
R n Refused to pass the node n.
After the node receives this command, the node ignores all of the
updates that contains node n in routing update.
S Display the statistics of route updates.
6. About the time control
? Each router sends out their routing table every 30 seconds (the time value can be
adjusted).
? Each router updates its own routing table according to the received routing table.
? Routers must have the ability to detect whether a neighbor is active. If the router does
not receive the update from the neighbor in 30*6 seconds (the time value can be
adjusted), it is considered that the neighbor is not reachable.
7. About topological structure
? Routers must have the ability to cope with failure and recovery. We assume that the
link does not appear to be faulty, and the packet is not lost and don’t occur errors.
? If the router is not running at the given time, there is a routing fault. If it restarts the
operation, it is considered that the router fault recovery.
Of course, we assume that communication is bidirectional.
8. About routing loop
? Reasonable maximum value should be set in order to avoid infinite route loop.
? Measures should be taken to reduce the survival time of the loop. Measures include: ? Split Horizon
? Poison reversion
9. Test
Normal case: in steady state.
Bad news: kill or shutdown one or more router processes or threads. To examine and
verify how split horizon and poison-reverse solve the problems.
Good news: restart the killed or launch new router processes or threads.
10. Programming
? Language: any (C, C++, Java, platform independent)
? User Interface:Design by yourself
? Windows and Graphics (Better)
? Console by input characters
? It is best to real-timely display the result,such as the process of routing update, the
Project 1: A Policy-Based Routing (PBR) Router based on Distance-Vector Algorithm
information of routing packet forwarding, etc.
11. Submission
(1) Project Report
Cover Page
? Project name
? Student Number
? Name
? Date
? School and University
Contents
? Objectives
? Description of Distance Vector Algorithm
? Requirement of experiment
? Programing language/Developing platform and tools
? Design ideas
? Data structures
? Implementation (development tools, model, definitions of objects/methods and
processes and threads, processing flows, etc.)
? Test, Verification, Result Analysis, Performance Analysis, Screenshot with
explanation
(2) Readme.txt
? Plain text format.
? Contain any bugs or issues that you know of in your code.
? It should also indicate how you run your code using command line.
(3) Source Codes
? The source of the program (Must have a program comments).
(4) Running Codes
? The compiled program that can run on Windows or Linux system.
4 / 4
软件开发、广告设计客服
QQ:99515681
邮箱:99515681@qq.com
工作时间:8:00-23:00
微信:codinghelp
热点项目
更多
代写math 1151, autumn 2024 w...
2024-11-14
代做comp4336/9336 mobile dat...
2024-11-14
代做eesa01 lab 2: weather an...
2024-11-14
代写comp1521 - 24t3 assignme...
2024-11-14
代写nbs8020 - dissertation s...
2024-11-14
代做fin b377f technical anal...
2024-11-14
代做ceic6714 mini design pro...
2024-11-14
代做introduction to computer...
2024-11-14
代做cs 353, fall 2024 introd...
2024-11-14
代做phy254 problem set #3 fa...
2024-11-14
代写n1569 financial risk man...
2024-11-14
代写csci-ua.0202 lab 3: enco...
2024-11-14
代写econ2226: chinese econom...
2024-11-14
热点标签
mktg2509
csci 2600
38170
lng302
csse3010
phas3226
77938
arch1162
engn4536/engn6536
acx5903
comp151101
phl245
cse12
comp9312
stat3016/6016
phas0038
comp2140
6qqmb312
xjco3011
rest0005
ematm0051
5qqmn219
lubs5062m
eee8155
cege0100
eap033
artd1109
mat246
etc3430
ecmm462
mis102
inft6800
ddes9903
comp6521
comp9517
comp3331/9331
comp4337
comp6008
comp9414
bu.231.790.81
man00150m
csb352h
math1041
eengm4100
isys1002
08
6057cem
mktg3504
mthm036
mtrx1701
mth3241
eeee3086
cmp-7038b
cmp-7000a
ints4010
econ2151
infs5710
fins5516
fin3309
fins5510
gsoe9340
math2007
math2036
soee5010
mark3088
infs3605
elec9714
comp2271
ma214
comp2211
infs3604
600426
sit254
acct3091
bbt405
msin0116
com107/com113
mark5826
sit120
comp9021
eco2101
eeen40700
cs253
ece3114
ecmm447
chns3000
math377
itd102
comp9444
comp(2041|9044)
econ0060
econ7230
mgt001371
ecs-323
cs6250
mgdi60012
mdia2012
comm221001
comm5000
ma1008
engl642
econ241
com333
math367
mis201
nbs-7041x
meek16104
econ2003
comm1190
mbas902
comp-1027
dpst1091
comp7315
eppd1033
m06
ee3025
msci231
bb113/bbs1063
fc709
comp3425
comp9417
econ42915
cb9101
math1102e
chme0017
fc307
mkt60104
5522usst
litr1-uc6201.200
ee1102
cosc2803
math39512
omp9727
int2067/int5051
bsb151
mgt253
fc021
babs2202
mis2002s
phya21
18-213
cege0012
mdia1002
math38032
mech5125
07
cisc102
mgx3110
cs240
11175
fin3020s
eco3420
ictten622
comp9727
cpt111
de114102d
mgm320h5s
bafi1019
math21112
efim20036
mn-3503
fins5568
110.807
bcpm000028
info6030
bma0092
bcpm0054
math20212
ce335
cs365
cenv6141
ftec5580
math2010
ec3450
comm1170
ecmt1010
csci-ua.0480-003
econ12-200
ib3960
ectb60h3f
cs247—assignment
tk3163
ics3u
ib3j80
comp20008
comp9334
eppd1063
acct2343
cct109
isys1055/3412
math350-real
math2014
eec180
stat141b
econ2101
msinm014/msing014/msing014b
fit2004
comp643
bu1002
cm2030
联系我们
- QQ: 9951568
© 2021
www.rj363.com
软件定制开发网!