首页
网站开发
桌面应用
管理软件
微信开发
App开发
嵌入式软件
工具软件
数据采集与分析
其他
首页
>
> 详细
MTH 4130编程辅导、讲解ANALYSIS程序语言、Python,CS编程设计调试 解析SPSS|解析Haskell程序
项目预算:
开发周期:
发布时间:
要求地区:
BERNARD BARUCH COLLEGE
MTH 4130 MATHEMATICS OF DATA ANALYSIS (FALL 2020)
Final
The aim of this take-home final is to illustrate the techniques discussed during the first lecture to predict
temperature as a function of time. The data to be used are historical records of temperatures across the United
States. Data are available on the Noaa website1
and we will focus on the Hourly02 directory. The time is
specified by UTC DATE, UTC TIME, LST DATE and the temperature by T HR AVG.
Part one. As you can see data refer to multiple weather stations across the United States. The data set is not
consistent, for some of the stations there are recordings going back to the year 2000 while for some other weather
stations data recording starts later in time. In addition, it may happen that some of the data are missing only
for few days of the year or few hours of a given day. We will focus on studying temperature relative to the
weather station in Asheville (North Carolina) as a function of time.
(1) Plot the data over different time intervals (e.g. one day, one week, and one month) and realize that
there are periodic variations happening at different time scales. Temperatures variations of night and
day cycles happen with a period of 24 hours while there are seasonality variations happening on the
time scale of months.
(2) Identify a good set of features (all of them have to be a function of time at this point of the project)
to be used with linear regression to describe the time series. Clearly, good candidates for this task are
periodic sine and cosine functions of time with periods that take into account the variations observed
at the previous point. Specify wich features you are using.
(3) By using linear regrassion, build a first predictive model that is valid only for the month of May. In
order to do that you can isolate the month of May from each year of the time series and use hourly
temperature relative to that month only to predict temperatures in May.
Blind cross validation does not really make sense in the context of time series. A better idea is to
train your model using all the data except the one referring to the last year available (that should be
2020) on which you can test your model. Focusing on the prediction of a given month should make
features selection a bit easier since seasonal variations of the temperature should not play such a big role.
The more features you use the more the complexity of your model increases. Show the phenomenon of
overfitting when too many features are included in the model.
(4) Try to build a model that works for the entire year. Now you should include features (again functions
of time) that take into account seasonal variation of the temperature. Include all the data up to 3
days before the day/time you want to predict. So if you are predicting the temperature on May 5th at
4pm. Use all the temperature available up to May 2 at 4pm. Compare the performances of these two
models (the one using only data from May and the one using data over all the year) to predict hourly
temperatures during the month of May.
(5) Build another model using KNN. Here overfitting happens as you decrease the number of points K used
to compute the local averages used in KNN. Explain how you choose K in this context.
(6) How do the linear regression model and KNN compare in terms of predictions?
Part two. Include in your model the features as T MAX and T MIN and P CALC. Do they help to predict the
temperature?
In addition, in this part you should analyze your model from the statistical point of view. How many
coefficient are significantly different from zero in your linear regression model? How big is their variance?
Part three - optional for extra credits. By looking at the data you may realize that there are temperatures
variations that are not regular in time. These are weather systems passing over the weather station. They are
hard to predict and, for instance, cannot be captured with the linear regression model used at the previous
point. Come up with a strategy to predict these events for a given weather stations. This strategy should be
based on the information that can be captured from nearby weather stations by considering that a weather
system over a given region it is likely to move to nearby regions with a pattern that most of the time is regular
(from west to east).
In this case it is useful to see if there is a correlation between signals of different stations. The correlation
analysis should be done taking into account times lag of the signals due to the fact that it takes time for a
weather system to move from a region to another.
1https://www.ncdc.noaa.gov/crn/qcdatasets.html
1
软件开发、广告设计客服
QQ:99515681
邮箱:99515681@qq.com
工作时间:8:00-23:00
微信:codinghelp
热点项目
更多
代做ceng0013 design of a pro...
2024-11-13
代做mech4880 refrigeration a...
2024-11-13
代做mcd1350: media studies a...
2024-11-13
代写fint b338f (autumn 2024)...
2024-11-13
代做engd3000 design of tunab...
2024-11-13
代做n1611 financial economet...
2024-11-13
代做econ 2331: economic and ...
2024-11-13
代做cs770/870 assignment 8代...
2024-11-13
代写amath 481/581 autumn qua...
2024-11-13
代做ccc8013 the process of s...
2024-11-13
代写csit040 – modern comput...
2024-11-13
代写econ 2070: introduc2on t...
2024-11-13
代写cct260, project 2 person...
2024-11-13
热点标签
mktg2509
csci 2600
38170
lng302
csse3010
phas3226
77938
arch1162
engn4536/engn6536
acx5903
comp151101
phl245
cse12
comp9312
stat3016/6016
phas0038
comp2140
6qqmb312
xjco3011
rest0005
ematm0051
5qqmn219
lubs5062m
eee8155
cege0100
eap033
artd1109
mat246
etc3430
ecmm462
mis102
inft6800
ddes9903
comp6521
comp9517
comp3331/9331
comp4337
comp6008
comp9414
bu.231.790.81
man00150m
csb352h
math1041
eengm4100
isys1002
08
6057cem
mktg3504
mthm036
mtrx1701
mth3241
eeee3086
cmp-7038b
cmp-7000a
ints4010
econ2151
infs5710
fins5516
fin3309
fins5510
gsoe9340
math2007
math2036
soee5010
mark3088
infs3605
elec9714
comp2271
ma214
comp2211
infs3604
600426
sit254
acct3091
bbt405
msin0116
com107/com113
mark5826
sit120
comp9021
eco2101
eeen40700
cs253
ece3114
ecmm447
chns3000
math377
itd102
comp9444
comp(2041|9044)
econ0060
econ7230
mgt001371
ecs-323
cs6250
mgdi60012
mdia2012
comm221001
comm5000
ma1008
engl642
econ241
com333
math367
mis201
nbs-7041x
meek16104
econ2003
comm1190
mbas902
comp-1027
dpst1091
comp7315
eppd1033
m06
ee3025
msci231
bb113/bbs1063
fc709
comp3425
comp9417
econ42915
cb9101
math1102e
chme0017
fc307
mkt60104
5522usst
litr1-uc6201.200
ee1102
cosc2803
math39512
omp9727
int2067/int5051
bsb151
mgt253
fc021
babs2202
mis2002s
phya21
18-213
cege0012
mdia1002
math38032
mech5125
07
cisc102
mgx3110
cs240
11175
fin3020s
eco3420
ictten622
comp9727
cpt111
de114102d
mgm320h5s
bafi1019
math21112
efim20036
mn-3503
fins5568
110.807
bcpm000028
info6030
bma0092
bcpm0054
math20212
ce335
cs365
cenv6141
ftec5580
math2010
ec3450
comm1170
ecmt1010
csci-ua.0480-003
econ12-200
ib3960
ectb60h3f
cs247—assignment
tk3163
ics3u
ib3j80
comp20008
comp9334
eppd1063
acct2343
cct109
isys1055/3412
math350-real
math2014
eec180
stat141b
econ2101
msinm014/msing014/msing014b
fit2004
comp643
bu1002
cm2030
联系我们
- QQ: 9951568
© 2021
www.rj363.com
软件定制开发网!