首页
网站开发
桌面应用
管理软件
微信开发
App开发
嵌入式软件
工具软件
数据采集与分析
其他
首页
>
> 详细
辅导ST309编程、讲解Python编程、Python程序语言调试 讲解SPSS|解析R语言编程
项目预算:
开发周期:
发布时间:
要求地区:
ST309 – Exercise 6
This counts for 10% of the final assessment of the course.
The marks in brackets reflect marks for each question.
Please submit your solutions in a pdf file to Moodle by 5pm (UK time) on Wednesday, 16 December. Late submission
entails penalties: 10 marks (out of maximum 100) will be deducted for each working day. Submissions
are not accepted after 5pm on Monday , 21 December.
This exercise is on credit card fraud detection based on a data set downloaded from Kaggle Datasets at
https://www.kaggle.com/mlg-ulb/creditcardfraud
Background information on the data is available at
https://www.kaggle.com/mlg-ulb/creditcardfraud/home
Previous attempts can be found at
https://www.kaggle.com/janiobachmann/credit-fraud-dealing-with-imbalanced-datasets/versions
(All those analysis was done using Python. But you should be able to follow the ideas, understand most the
results. Especially some initial data exploration is easy to follow.)
The dataset contains 284,807 credit card transactions in two days in September 2013 by European cardholders,
of which 492 are frauds. So the data is highly unbalanced: the positive cases (i.e. frauds) account for
merely 0.172% of all transactions.
Due to the confidentiality issues, the original features for each transaction are masked via a linear transformation.
The 28 transformed features are presented as V1, V2, · · · , V28. According to the above webpage,
those 28 features are the principal components of the original features. No further information on those features
is provided. In addition to those 28 variables, there are 3 untransformed variables:
• Time: number of seconds elapsed between each transaction and the first transaction in the dataset
• Amount: the amount of the transaction
• Class: binary label with value 1 for ‘fraud’ and 0 otherwise.
The whole dataset has 284,807 rows and 31 columns. The task is to build up effective algorithms for detecting
fraudulent credit card transactions.
The data is extremely imbalanced with only 0.172% ‘positives’ (i.e. frauds). Hence the information on
frauds is overwhelmed by that on true and genuine transactions. This imbalance leads the fitted models using
the whole data predominately led by the information on ‘negatives’, and the signal on ‘positives’ is too weak
to be picked up. To balance the information used in building classifiers, we have created a more balanced but,
unfortunately, much smaller training data with 24.62% positive cases, and also a testing data set which is about
equally imbalanced as the whole data set.
• creditCardTrain.csv: of size 1592×31, consisting of 1200 randomly selected non-fraudulent transactions
plus 392 randomly selected fraud transactions. The true positive rate is about 24.62%.
• creditCardTest.csv: of size 57889 × 31, consisting of 57789 randomly selected non-fraudulent transactions
plus 100 remaining fraud transactions. It has no overlaps with creditCardTrain.csv. The true
positive rate is 0.173%.
The two data sets are placed on the course Moodle page. For your information, I attach below the codes for
constructing those two data sets.
> library(readr); library(dplyr)
> CC=read_csv("creditcard.csv") # read_csv is a much faster version of read.csv
> CC1=CC[CC$Class==1,] # extract all frauds
> dim(CC1)
[1] 492 31
> train1=sample(1:492, 392)
1
> CC1train=CC1[train1,]
> CC1test=CC1[-train1,]
> CC0=CC[CC$Class==0,] # extract all genuine transactions
> dim(CC0)
[1] 284315 31
> train0=sample(1:284315, 58988)
> Dtrain=bind_rows(CC1train, CC0[train0[1:1200],]) # bind the rows from two data together
> dim(Dtrain)
[1] 1592 31
> Dtrain=arrange(Dtrain, Time) # re-arrange rows according to ascending order of Time
> write.csv(Dtrain, row.names=F, "creditCardTrain.csv")
> Dtest=bind_rows(CC1test, CC0[train0[1200:58988],])
> dim(Dtest)
[1] 57889 31
> Dtest=arrange(Dtest, Time)
> write.csv(Dtest, row.names=F, "creditCardTest.csv")
> rm(CC, CC0, CC1, CC1test, CC1train, Dtest, Dtrain, train0, train1) # remove those objects
Your analysis should be based on creditCardTrain.csv. creditCardTest.csv represents the true reality,
and should be used only to test the performance of your models.
1. Carry out some exploratory data analysis first. You may like to address the issues such as
• are there any missing values and outliers? [5 marks]
• should you apply any transformations to any variables, for example, log(Amount + 1)? [10 marks]
• is Time relevant to detecting frauds? [5 marks]
2. Suppose that the credit card company charges 2% fees for each transaction (deducted from the payment
to payee).
(a) Estimate the expected potential loss of a fraudulent transaction. [5 marks]
(b) Estimate the expected profit from a genuine transaction. [5 marks]
(c) Let α denote the probability that a transaction is fraud. What is the minimum value of α to declare
‘Fraud’ in order to ensure that the expected profit from a single transaction is non-negative?
[5 marks]
A simple illustration on how a credit card works: Suppose you purchase an item from a shop for
£100 payed out of your credit card, the credit card company will pay £98 to the shop at the time. By
the end of the month, you pay back £100 to the credit card company. So the company make a profit of
£2. But if the purchase was not made by you (i.e. a fraud), you will not pay anything to the credit card
company. The company will make a loss of £98.
3. Let the profit matrix be
non-Fraud Fraud
No B −C
Yes −1 0
where C and B are calculated, respectively, in 2(a) and 2(b) above. The nominal value −1 reflects customer’s
unhappiness when a genuine transaction is denied.
(a) Construct a decision tree for detecting frauds. [10 marks]
(b) Find the value of the cutting-off probability, denoted by αb, which maximizes the expected profit.
[10 marks]
(c) Test the performance of your decision tree on the testing data set, with the cutting-off probability 0.5
and αb respectively. Now you should calculate the true profits or losses according to the real amount
of each transaction in the testing data sets. [10 marks]
2
(d) Construct a logistic regression model for detecting frauds. You may use the same predictor selected
in the tree model above. [10 marks]
(e) Plot the ROC curves with the testing data for both the tree and the logistic regression classifiers
constructed above, and compare them using the ‘area under curve’. [15 marks]
4. In your opinion, what are the pros and cons of the above analysis? Do you have any suggestions for further
improvement? [10 marks]
Note. The strategy to build classifiers using a subset with a much higher positive rate was merged after some
initial and less successful attempts. This learning process also reflects one important principle of data analytics:
Iteration is the law of learning!
3
软件开发、广告设计客服
QQ:99515681
邮箱:99515681@qq.com
工作时间:8:00-23:00
微信:codinghelp
热点项目
更多
urba6006代写、java/c++编程语...
2024-12-26
代做program、代写python编程语...
2024-12-26
代写dts207tc、sql编程语言代做
2024-12-25
cs209a代做、java程序设计代写
2024-12-25
cs305程序代做、代写python程序...
2024-12-25
代写csc1001、代做python设计程...
2024-12-24
代写practice test preparatio...
2024-12-24
代写bre2031 – environmental...
2024-12-24
代写ece5550: applied kalman ...
2024-12-24
代做conmgnt 7049 – measurem...
2024-12-24
代写ece3700j introduction to...
2024-12-24
代做adad9311 designing the e...
2024-12-24
代做comp5618 - applied cyber...
2024-12-24
热点标签
mktg2509
csci 2600
38170
lng302
csse3010
phas3226
77938
arch1162
engn4536/engn6536
acx5903
comp151101
phl245
cse12
comp9312
stat3016/6016
phas0038
comp2140
6qqmb312
xjco3011
rest0005
ematm0051
5qqmn219
lubs5062m
eee8155
cege0100
eap033
artd1109
mat246
etc3430
ecmm462
mis102
inft6800
ddes9903
comp6521
comp9517
comp3331/9331
comp4337
comp6008
comp9414
bu.231.790.81
man00150m
csb352h
math1041
eengm4100
isys1002
08
6057cem
mktg3504
mthm036
mtrx1701
mth3241
eeee3086
cmp-7038b
cmp-7000a
ints4010
econ2151
infs5710
fins5516
fin3309
fins5510
gsoe9340
math2007
math2036
soee5010
mark3088
infs3605
elec9714
comp2271
ma214
comp2211
infs3604
600426
sit254
acct3091
bbt405
msin0116
com107/com113
mark5826
sit120
comp9021
eco2101
eeen40700
cs253
ece3114
ecmm447
chns3000
math377
itd102
comp9444
comp(2041|9044)
econ0060
econ7230
mgt001371
ecs-323
cs6250
mgdi60012
mdia2012
comm221001
comm5000
ma1008
engl642
econ241
com333
math367
mis201
nbs-7041x
meek16104
econ2003
comm1190
mbas902
comp-1027
dpst1091
comp7315
eppd1033
m06
ee3025
msci231
bb113/bbs1063
fc709
comp3425
comp9417
econ42915
cb9101
math1102e
chme0017
fc307
mkt60104
5522usst
litr1-uc6201.200
ee1102
cosc2803
math39512
omp9727
int2067/int5051
bsb151
mgt253
fc021
babs2202
mis2002s
phya21
18-213
cege0012
mdia1002
math38032
mech5125
07
cisc102
mgx3110
cs240
11175
fin3020s
eco3420
ictten622
comp9727
cpt111
de114102d
mgm320h5s
bafi1019
math21112
efim20036
mn-3503
fins5568
110.807
bcpm000028
info6030
bma0092
bcpm0054
math20212
ce335
cs365
cenv6141
ftec5580
math2010
ec3450
comm1170
ecmt1010
csci-ua.0480-003
econ12-200
ib3960
ectb60h3f
cs247—assignment
tk3163
ics3u
ib3j80
comp20008
comp9334
eppd1063
acct2343
cct109
isys1055/3412
math350-real
math2014
eec180
stat141b
econ2101
msinm014/msing014/msing014b
fit2004
comp643
bu1002
cm2030
联系我们
- QQ: 9951568
© 2021
www.rj363.com
软件定制开发网!