首页
网站开发
桌面应用
管理软件
微信开发
App开发
嵌入式软件
工具软件
数据采集与分析
其他
首页
>
> 详细
7CCEMCHD程序语言讲解、辅导Java程序、Python,c++编程讲解 辅导Database|辅导Python编程
项目预算:
开发周期:
发布时间:
要求地区:
Assignment 3 6CCE3CHD/7CCEMCHD
Note: In all the problems, be mindful of the units of various quantities and the sign conventions
for currents and voltages.
Your submission must include:
1. A .pdf file clearly documenting your code, figures, and results.
2. Your code.
There are three questions in this HW and you should submit three codes. We should be able
to run these three code files and obtain all the figures for each of the three questions. You will
lose credit if your code is absent or cannot be run.
Store your write-up and code in a single directory named hw1 yourID (for example hw1 12D423222)
and submit it in Keats.
Do not wait till the last minute to start the Assignment as you will require at least at least 8
hours to complete all the questions.
You may discuss the overall approach and high-level aspects with your group partners, but
codes and submitted documents should be your own.
Late submission policy:
Before the solution key is uploaded in Keats: If your original score is S and you submitted
the HW X hours after the deadline, your score will be S exp(−X/24).
After the solution key is uploaded in Keats: 0 credit.
In this assignment, we will study a simple case of a SNN receiving time-dependent inputs.
Problem 1: Interconnected network of neurons with non-plastic synapses
The connectivity relationship between the neurons can be represented by a N × N matrix W
where wi,j is the strength of connection from neuron j to neuron i.
(a) Write the connectivity matrix for the following 3-neuron, 9-synapse network: Neuron 1 receives
input from Neuron 3 with a strength of 100. Neuron 2 receives input from Neuron 1 with
a strength of 500. Neuron 3 receives input from both Neuron 1 and neuron 2 with a strength of
300 and 200 respectively. 2 points
(b) The spiking state of the neurons can be represented by a N × 1 column vector, S. At any
time instant, if the k
th neuron spikes, the k
th entry of this column vector is 1, else it is 0.
Assume that neuron 1 and 3 spiked at the same instant of time, t. For the simple case of
the synaptic current kernel being a delta function, determine the product W × S and convince
yourself that the resulting vector represents the current flowing into the neurons, based on the
connection strengths between them. 2 points
(c) Now, we will study the dynamics of LIF neurons with non-plastic syanpses connecting
them to each other. In order to incorporate synaptic communication, we will require the following
modifications. We will use the LIF neuron from HW 1, but with an extra term to incorporate
the synaptic current,
(2)
Hence, the post-synaptic current is generated in response to the spikes and has to be calculated
at every time instant based on all the previous instants of time when the pre-synaptic
neuron spiked. One way to efficiently determine this spike-driven synaptic current is to maintain
a spike kernel matrix K(t) with dimensions [N,(T/∆t)]
(3)
and then obtain the synaptic current Isyn(t) = W × K(t).
Simulate two neurons connected to each other through a synapse of weight w21 = 7 and I0 =
7000 pA. The input neuron receives DC input current of magnitude 2800 pA and with varying
time durations as shown below (i.e., each ON pulse has a duration of 20, 40, 60, 80 and 100 ms,
with 40 ms in between each of them, and total duration of T = 500 ms). Plot all voltages and
currents and explain the observed dynamics.
Your code should be written for a general network of N neurons, whose connectivity is described
by the matrix W, and you are only allowed to iterate over time. 16 points
Problem 2: Fully connected two neuron network
Now simulate the dynamics of a two-neuron network, if the neurons are connected to each
other with synaptic weights w12 = w21 = 7. You should apply the waveform from problem 1,
but with the first 4 ON pulses, and a total duration of T = 400 ms (i.e., input current is zero after
320 ms). Plot all voltages and currents and explain the observed dynamics. 10 points
Problem 3: Persistent signal detector
Using the same input excitation from problem 1, design a three-neuron circuit which acts as a
persistent signal detector. You should determine the synaptic weights such that the output neuron
spikes only if the pulse-width is more than 50 ms. 20 points
Problem 4: Persistent signal detector with imperfect devices
To implement the above design efficiently, we could use nanoscale devices whose conductance
can be used to represent the weights. Using the function to translate the floating-point
weights to device level weights, run the network again, and determine the response. If you are
not able to get the desired network behaviour, fine-tune the software weights or modify your
network design. 10 points
软件开发、广告设计客服
QQ:99515681
邮箱:99515681@qq.com
工作时间:8:00-23:00
微信:codinghelp
热点项目
更多
代写math 1151, autumn 2024 w...
2024-11-14
代做comp4336/9336 mobile dat...
2024-11-14
代做eesa01 lab 2: weather an...
2024-11-14
代写comp1521 - 24t3 assignme...
2024-11-14
代写nbs8020 - dissertation s...
2024-11-14
代做fin b377f technical anal...
2024-11-14
代做ceic6714 mini design pro...
2024-11-14
代做introduction to computer...
2024-11-14
代做cs 353, fall 2024 introd...
2024-11-14
代做phy254 problem set #3 fa...
2024-11-14
代写n1569 financial risk man...
2024-11-14
代写csci-ua.0202 lab 3: enco...
2024-11-14
代写econ2226: chinese econom...
2024-11-14
热点标签
mktg2509
csci 2600
38170
lng302
csse3010
phas3226
77938
arch1162
engn4536/engn6536
acx5903
comp151101
phl245
cse12
comp9312
stat3016/6016
phas0038
comp2140
6qqmb312
xjco3011
rest0005
ematm0051
5qqmn219
lubs5062m
eee8155
cege0100
eap033
artd1109
mat246
etc3430
ecmm462
mis102
inft6800
ddes9903
comp6521
comp9517
comp3331/9331
comp4337
comp6008
comp9414
bu.231.790.81
man00150m
csb352h
math1041
eengm4100
isys1002
08
6057cem
mktg3504
mthm036
mtrx1701
mth3241
eeee3086
cmp-7038b
cmp-7000a
ints4010
econ2151
infs5710
fins5516
fin3309
fins5510
gsoe9340
math2007
math2036
soee5010
mark3088
infs3605
elec9714
comp2271
ma214
comp2211
infs3604
600426
sit254
acct3091
bbt405
msin0116
com107/com113
mark5826
sit120
comp9021
eco2101
eeen40700
cs253
ece3114
ecmm447
chns3000
math377
itd102
comp9444
comp(2041|9044)
econ0060
econ7230
mgt001371
ecs-323
cs6250
mgdi60012
mdia2012
comm221001
comm5000
ma1008
engl642
econ241
com333
math367
mis201
nbs-7041x
meek16104
econ2003
comm1190
mbas902
comp-1027
dpst1091
comp7315
eppd1033
m06
ee3025
msci231
bb113/bbs1063
fc709
comp3425
comp9417
econ42915
cb9101
math1102e
chme0017
fc307
mkt60104
5522usst
litr1-uc6201.200
ee1102
cosc2803
math39512
omp9727
int2067/int5051
bsb151
mgt253
fc021
babs2202
mis2002s
phya21
18-213
cege0012
mdia1002
math38032
mech5125
07
cisc102
mgx3110
cs240
11175
fin3020s
eco3420
ictten622
comp9727
cpt111
de114102d
mgm320h5s
bafi1019
math21112
efim20036
mn-3503
fins5568
110.807
bcpm000028
info6030
bma0092
bcpm0054
math20212
ce335
cs365
cenv6141
ftec5580
math2010
ec3450
comm1170
ecmt1010
csci-ua.0480-003
econ12-200
ib3960
ectb60h3f
cs247—assignment
tk3163
ics3u
ib3j80
comp20008
comp9334
eppd1063
acct2343
cct109
isys1055/3412
math350-real
math2014
eec180
stat141b
econ2101
msinm014/msing014/msing014b
fit2004
comp643
bu1002
cm2030
联系我们
- QQ: 9951568
© 2021
www.rj363.com
软件定制开发网!