首页
网站开发
桌面应用
管理软件
微信开发
App开发
嵌入式软件
工具软件
数据采集与分析
其他
首页
>
> 详细
MATH20811程序辅导、R留学生编程讲解、data analysis程序辅导 讲解留学生Processing|辅导Python程序
项目预算:
开发周期:
发布时间:
要求地区:
Coursework 1 – Exploratory data analysis and correlation
MATH20811 Practical Statistics: Coursework 1
(November 2020)
The marks awarded for this coursework constitute 30% of the total assessment for the module.
Your solution to the coursework should be fairly concise (maximum of about 10 pages) and it
should take, on average, about 15 hours to complete.
Please read all the instructions and advice given below carefully.
The submission deadline is 10:00 am on Monday 16 November 2020.
Late Submission of Work: Any student’s work that is submitted after the given deadline will
be classed as late, unless an extension has already been agreed via mitigating circumstances or a
DASS extension.
The following rules for the application of penalties for late submission are quoted from the
University guidance on late submission document, version 1.3 (dated July 2019):
”Any work submitted at any time within the first 24 hours following the published submission
deadline will receive a penalty of 10% of the maximum amount of marks available. Any work
submitted at any time between 24 hours and up to 48 hours late will receive a deduction of 20%
of the marks available, and so on, at the rate of an additional 10% of available marks deducted
per 24 hours, until the assignment is submitted or no marks remain.”
Your submitted solutions should all be in one document. This must be prepared using LaTeX.
For each part of the question you should provide explanations as to how you completed what is
required, show your workings and also comment on computational results, where applicable.
When you include a plot, be sure to give it a title and label the axes correctly.
When you have written or used R code to answer any of the parts, then you should list this R code
after the particular written answer to which it applies. This may be the R code for a function you
have written and/or code you have used to produce numerical results, plots and tables. R code
should also be clearly annotated.
Do not use screenshots of R code/output. Instead, to include R code use the verbatim environment
and summarise R output in tables using the table environment, as demonstrated in the solution of
Example Sheet 2.
Your file should be submitted through the module site on Blackboard to the Turnitin assessment
in the Coursework folder entitled “MATH20811 CW1” by the above time and date. The work
will be marked anonymously on Blackboard so please ensure that your filename is clear but that
it does not contain your name and student id number. Similarly, do not include your name and
id number in the document itself.
There is a basic LaTeX template file on Blackboard which you may choose to use for typing-up
your solutions. The file is called CW1_submitted_work.tex.
Coursework 1 – Exploratory data analysis and correlation
Turnitin will generate a similarity report for your submitted document and indicate matches to
other sources, including billions of internet documents (both live and archived), a subscription
repository of periodicals, journals and publications, as well as submissions from other students.
Please ensure that the document you upload represents your own work and is written in your own
words. The Turnitin report will be available for you to see shortly after the due date.
This coursework should hopefully help to reinforce some of the methodology you have been studying,
as well as the skills in R you have been developing in the module. Correct interpretation and
meaningful discussion of the results (i.e. attempt to put the results into context) are as important
as correct calculation of the results, in order to achieve a high mark for the coursework.
Coursework 1 – Exploratory data analysis and correlation
The data are in the file white_wine.csv (Cortez et al, 2009) contain various measurements on
white wine variants of the Portuguese Vinho Verde wine. Import the data into R from your default
folder using the command:
white_wine=read.table("white_wine.csv", sep = ";", header = TRUE)
The object white_wine contains measurements on 11 continuous variables: fixed.acidity,
volatile.acidity, citric.acid, residual.sugar, chlorides, free.sulfur.dioxide,
total.sulfur.dioxide, density, pH, sulphates, alcohol plus one discrete, ordinal variable:
quality.
For the purposes of this coursework we will just use the variables in columns 7, 8 and 12 which
are:
total.sulfur.dioxide
density
quality
Note that total.sulfur.dioxide and density are both numeric variables, quality is a discrete,
ordinal variable
1. (i) Using selected summary statistics and graphical displays from those discussed in weeks
1 and 2 of this module, explore the univariate empirical distribution of
total.sulfur.dioxide. Comment on your results.
[4]
(ii) Using box-plots, look at the distributions of the total.sulfur.dioxide data at the
different values of quality. Comment on the results.
[4]
(iii) Produce a scatterplot of the total.sulfur.dioxide and density data with the contours
from a bivariate Normal density having appropriately estimated parameters.
Comment on your impression of the bivariate Normal distribution as a suitable probability
model for these data.
[4]
2. Using the function cor, calculate both Pearson’s and Spearman’s correlation between:
❼ total.sulfur.dioxide and density
❼ log(total.sulfur.dioxide) and log(density)
Comment on the results and give an explanation for any discrepancies or similarities between
the various correlation estimates.
[3]
Coursework 1 – Exploratory data analysis and correlation
3. Let ρ1 denote the correlation in the joint distribution of total.sulfur.dioxide and density.
Based on using Pearson’s correlation coefficient, perform a DIY (ie. write your own code to
do the calculations) hypothesis test of
H0 : ρ1 = 0.5 vs HA : ρ1 6= 0.5
at the 5% significance level using Fisher’s Z-transform. Compute the p-value and use it to
decide whether to reject the null hypothesis in favour of the alternative.
Calculate DIY an approximate 95% confidence interval (CI) for ρ1 based on Fisher’s Ztransform
and verify that your calculations agree with the CI produced by cor.test.
[6]
4. Write a function in R to verify via simulation that the distribution of Fisher’s Z-transform
statistic, for a given sample size n, is approximately Normal. Your function should produce
a plot comparing the sampling distribution of Fisher’s Z-transform statistic and the appropriate
approximate Normal distribution the statistic has under the assumption that the true
correlation parameter equals zero. In your simulation, you may assume sample data pairs
(x, y) come from independent Normal distributions having user-input parameter values.
As your solution to this part, please submit the code for your function and also run it in R
to produce the plot described in the paragraph above.
[6]
5. Using the function cor.test, test null the hypothesis:
H0: there is no monotonic association between total.sulfur.dioxide and density in their
joint distribution vs HA: there is a monotonic association between these two variables.
Describe how the test has been carried out for these data and report your conclusions.
[3]
References
[1] P. Cortez, A. Cerdeira, F. Almeida, T. Matos and J. Reis. Modeling wine preferences by data
mining from physicochemical properties. In Decision Support Systems, Elsevier, 47(4):547-553.
ISSN: 0167-9236.
软件开发、广告设计客服
QQ:99515681
邮箱:99515681@qq.com
工作时间:8:00-23:00
微信:codinghelp
热点项目
更多
urba6006代写、java/c++编程语...
2024-12-26
代做program、代写python编程语...
2024-12-26
代写dts207tc、sql编程语言代做
2024-12-25
cs209a代做、java程序设计代写
2024-12-25
cs305程序代做、代写python程序...
2024-12-25
代写csc1001、代做python设计程...
2024-12-24
代写practice test preparatio...
2024-12-24
代写bre2031 – environmental...
2024-12-24
代写ece5550: applied kalman ...
2024-12-24
代做conmgnt 7049 – measurem...
2024-12-24
代写ece3700j introduction to...
2024-12-24
代做adad9311 designing the e...
2024-12-24
代做comp5618 - applied cyber...
2024-12-24
热点标签
mktg2509
csci 2600
38170
lng302
csse3010
phas3226
77938
arch1162
engn4536/engn6536
acx5903
comp151101
phl245
cse12
comp9312
stat3016/6016
phas0038
comp2140
6qqmb312
xjco3011
rest0005
ematm0051
5qqmn219
lubs5062m
eee8155
cege0100
eap033
artd1109
mat246
etc3430
ecmm462
mis102
inft6800
ddes9903
comp6521
comp9517
comp3331/9331
comp4337
comp6008
comp9414
bu.231.790.81
man00150m
csb352h
math1041
eengm4100
isys1002
08
6057cem
mktg3504
mthm036
mtrx1701
mth3241
eeee3086
cmp-7038b
cmp-7000a
ints4010
econ2151
infs5710
fins5516
fin3309
fins5510
gsoe9340
math2007
math2036
soee5010
mark3088
infs3605
elec9714
comp2271
ma214
comp2211
infs3604
600426
sit254
acct3091
bbt405
msin0116
com107/com113
mark5826
sit120
comp9021
eco2101
eeen40700
cs253
ece3114
ecmm447
chns3000
math377
itd102
comp9444
comp(2041|9044)
econ0060
econ7230
mgt001371
ecs-323
cs6250
mgdi60012
mdia2012
comm221001
comm5000
ma1008
engl642
econ241
com333
math367
mis201
nbs-7041x
meek16104
econ2003
comm1190
mbas902
comp-1027
dpst1091
comp7315
eppd1033
m06
ee3025
msci231
bb113/bbs1063
fc709
comp3425
comp9417
econ42915
cb9101
math1102e
chme0017
fc307
mkt60104
5522usst
litr1-uc6201.200
ee1102
cosc2803
math39512
omp9727
int2067/int5051
bsb151
mgt253
fc021
babs2202
mis2002s
phya21
18-213
cege0012
mdia1002
math38032
mech5125
07
cisc102
mgx3110
cs240
11175
fin3020s
eco3420
ictten622
comp9727
cpt111
de114102d
mgm320h5s
bafi1019
math21112
efim20036
mn-3503
fins5568
110.807
bcpm000028
info6030
bma0092
bcpm0054
math20212
ce335
cs365
cenv6141
ftec5580
math2010
ec3450
comm1170
ecmt1010
csci-ua.0480-003
econ12-200
ib3960
ectb60h3f
cs247—assignment
tk3163
ics3u
ib3j80
comp20008
comp9334
eppd1063
acct2343
cct109
isys1055/3412
math350-real
math2014
eec180
stat141b
econ2101
msinm014/msing014/msing014b
fit2004
comp643
bu1002
cm2030
联系我们
- QQ: 9951568
© 2021
www.rj363.com
软件定制开发网!