首页
网站开发
桌面应用
管理软件
微信开发
App开发
嵌入式软件
工具软件
数据采集与分析
其他
首页
>
> 详细
ECON 570语言编程讲解、辅导c++,Java程序设计、Python编程讲解 讲解SPSS|辅导R语言编程
项目预算:
开发周期:
发布时间:
要求地区:
ECON 570 Problem Set 3
Due: November 13, 2020
1 Lalonde NSW Data
A. Load the Lalonde experimental dataset with the lalonde_data method from the module
causalinference.utils. The outcome variable is earnings in 1978, and the covariates
are, in order:
Black Indicator variable; 1 if Black, 0 otherwise.
Hispanic Indicator variable; 1 if Hispanic, 0 otherwise.
Age Age in years.
Married Marital status; 1 if married, 0 otherwise.
Nodegree Indicator variable; 1 if no degree, 0 otherwise.
Education Years of education.
E74 Earnings in 1974.
U74 Unemployment status in 1974; 1 if unemployed, 0 otherwise.
E75 Earnings in 1975.
U75 Unemployment status in 1975; 1 if unemployed, 0 otherwise.
Using CausalModel from the module causalinference, provide summary statistics
for the outcome variable and the covariates. Which covariate has the largest normalized
difference?
B. Estimate the propensity score using the selection algorithm est_propensity_s. In
selecting the basic covariates set, specify E74, U74, E75, and U75. What are the additional
linear terms and second-order terms that were selected by the algorithm?
C. Trim the sample using trim_s to get rid of observations with extreme propensity score
values. What is the cut-off that is selected? How many observations are dropped as a
result?
1
D. Stratify the sample using stratify_s. How many propensity bins are created? Report
the summary statistics for each bin.
E. Estimate the average treatment effect using OLS, blocking, and matching. For matching,
set the number of matches to 2 and adjust for bias. How much do the estimates
differ?
2 Document Classification
A. From the module sklearn.datasets, load the training data set using the method
fetch_20newsgroups. This dataset comprises around 18000 newsgroups posts on 20
topics. Print out a couple sample posts and list out all the topic names.
B. Convert the posts (blobs of texts) into bag-of-word vectors. What is the dimensionality
of these vectors? That is, what is the number of words that have appeared in this data
set?
C. Use your favorite dimensionality reduction technique to compress these vectors into
ones of K = 30 dimensions.
D. Use your favorite supervised learning model to train a model that tries to predict the
topic of a post from the vectorized representation of the post you obtained in the
previous step.
E. Use the test data to tune your model. Make sure to include K as a hyperparameter as
well. Use accuracy_score from sklearn.metrics as your evaluation metric. What
is the highest accuracy you are able to achieve?
2
软件开发、广告设计客服
QQ:99515681
邮箱:99515681@qq.com
工作时间:8:00-23:00
微信:codinghelp
热点项目
更多
urba6006代写、java/c++编程语...
2024-12-26
代做program、代写python编程语...
2024-12-26
代写dts207tc、sql编程语言代做
2024-12-25
cs209a代做、java程序设计代写
2024-12-25
cs305程序代做、代写python程序...
2024-12-25
代写csc1001、代做python设计程...
2024-12-24
代写practice test preparatio...
2024-12-24
代写bre2031 – environmental...
2024-12-24
代写ece5550: applied kalman ...
2024-12-24
代做conmgnt 7049 – measurem...
2024-12-24
代写ece3700j introduction to...
2024-12-24
代做adad9311 designing the e...
2024-12-24
代做comp5618 - applied cyber...
2024-12-24
热点标签
mktg2509
csci 2600
38170
lng302
csse3010
phas3226
77938
arch1162
engn4536/engn6536
acx5903
comp151101
phl245
cse12
comp9312
stat3016/6016
phas0038
comp2140
6qqmb312
xjco3011
rest0005
ematm0051
5qqmn219
lubs5062m
eee8155
cege0100
eap033
artd1109
mat246
etc3430
ecmm462
mis102
inft6800
ddes9903
comp6521
comp9517
comp3331/9331
comp4337
comp6008
comp9414
bu.231.790.81
man00150m
csb352h
math1041
eengm4100
isys1002
08
6057cem
mktg3504
mthm036
mtrx1701
mth3241
eeee3086
cmp-7038b
cmp-7000a
ints4010
econ2151
infs5710
fins5516
fin3309
fins5510
gsoe9340
math2007
math2036
soee5010
mark3088
infs3605
elec9714
comp2271
ma214
comp2211
infs3604
600426
sit254
acct3091
bbt405
msin0116
com107/com113
mark5826
sit120
comp9021
eco2101
eeen40700
cs253
ece3114
ecmm447
chns3000
math377
itd102
comp9444
comp(2041|9044)
econ0060
econ7230
mgt001371
ecs-323
cs6250
mgdi60012
mdia2012
comm221001
comm5000
ma1008
engl642
econ241
com333
math367
mis201
nbs-7041x
meek16104
econ2003
comm1190
mbas902
comp-1027
dpst1091
comp7315
eppd1033
m06
ee3025
msci231
bb113/bbs1063
fc709
comp3425
comp9417
econ42915
cb9101
math1102e
chme0017
fc307
mkt60104
5522usst
litr1-uc6201.200
ee1102
cosc2803
math39512
omp9727
int2067/int5051
bsb151
mgt253
fc021
babs2202
mis2002s
phya21
18-213
cege0012
mdia1002
math38032
mech5125
07
cisc102
mgx3110
cs240
11175
fin3020s
eco3420
ictten622
comp9727
cpt111
de114102d
mgm320h5s
bafi1019
math21112
efim20036
mn-3503
fins5568
110.807
bcpm000028
info6030
bma0092
bcpm0054
math20212
ce335
cs365
cenv6141
ftec5580
math2010
ec3450
comm1170
ecmt1010
csci-ua.0480-003
econ12-200
ib3960
ectb60h3f
cs247—assignment
tk3163
ics3u
ib3j80
comp20008
comp9334
eppd1063
acct2343
cct109
isys1055/3412
math350-real
math2014
eec180
stat141b
econ2101
msinm014/msing014/msing014b
fit2004
comp643
bu1002
cm2030
联系我们
- QQ: 9951568
© 2021
www.rj363.com
软件定制开发网!